Rational series and asymptotic expansion for linear homogeneous divide-and-conquer recurrences

نویسنده

  • Philippe Dumas
چکیده

Among all sequences that satisfy a divide-and-conquer recurrence, the sequences that are rational with respect to a numeration system are certainly the most immediate and most essential. Nevertheless, until recently they have not been studied from the asymptotic standpoint. We show how a mechanical process permits to compute their asymptotic expansion. It is based on linear algebra, with Jordan normal form, joint spectral radius, and dilation equations. The method is compared with the analytic number theory approach, based on Dirichlet series and residues, and new ways to compute the Fourier series of the periodic functions involved in the expansion are developed. The article comes with an extended bibliography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Algebraic and analytic approaches collated

Article history: Received 8 April 2013 Received in revised form 2 June 2014 Accepted 18 June 2014 Available online 8 July 2014 Communicated by H. Prodinger

متن کامل

Exact Asymptotics of Divide-and-Conquer Recurrences

The divide-and-conquer principle is a majoi paradigm of algorithms design. Corresponding cost functions satisfy recurrences that directly reflect the decomposition mechanism used in the algorithm. This work shows that periodicity phenomena, often of a fractal nature, are ubiquitous in the performances of these algorithms. Mellin transforms and Dirichlet series are used to attain precise asympto...

متن کامل

Eeective Asymptotics of Linear Recurrences with Rational Coeecients

We give algorithms to compute the asymptotic expansion of solutions of linear recurrences with rational coeecients and rational initial conditions in polynomial time in the order of the recurrence.

متن کامل

Asymptotics of Linear Recurrences with Rational Coeecients Asymptotics of Linear Recurrences with Rational Coeecients Asymptotics of Linear Recurrences with Rational Coeecients

We give algorithms to compute the asymptotic expansion of solutions of linear recurrences with rational coeecients and rational initial conditions in polynomial time in the order of the recurrence. Asymptotique des r ecurrences lin eaires a coeecients rationnels R esum e Nous pr esentons des algorithmes pour le calcul du d eveloppement asymptotique des solutions de r ecurrences lin eaires a coe...

متن کامل

Asymptotics of linear divide-and-conquer recurrences

Asymptotics of divide-and-conquer recurrences is usually dealt either with elementary inequalities or with sophisticated methods coming from analytic number theory. Philippe Dumas proposes a new approach based on linear algebra. The example of the complexity of Karatsuba’s algorithm is used as a guide in this summary. The complexity analysis of divide-and-conquer algorithms gives rise to recurr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.0189  شماره 

صفحات  -

تاریخ انتشار 2013